I am interested in developing scalable, structured, and interpretable Bayesian methods, with a focus on Bayesian nonparametrics. These often involve building probabilistic models, with particular interests being:
(1) incorporating prior information relevant to a specific problem of interest,
(2) bypassing existing computational bottlenecks, and
(3) obtaining provable theoretical guarantees.
As a part of the global OHDSI community, I am passionate about delivering reliable clinical evidence from massive observational healthcare data-driven studies.
Preprints
- Chattopadhyay, S., Bu, F., Schuemie, M. J., …, Suchard, M. A. (2024). Comparative performance of the concurrent comparator design with existing vaccine safety surveillance approaches on real-world observational health data. (preprint available upon request)
- Chattopadhyay, S., Zhang, A. R., & Dunson, D. B. (2024). Blessing of dimension in Bayesian inference on covariance matrices. arXiv preprint arXiv:2404.03805. (Link)
Publications
- Morales, D. R., Bu, F., Viernes, B., DuVall, S. L., Matheny, M. E., Simon, K. R., Falconer, T., Richter, L. R., Ostropolets, A., Lau, W. C. Y., Man, K. K. C, Chattopadhyay, S., …, Suchard, M. A. (2025). Risk of Thyroid Tumors With GLP-1 Receptor Agonists: A Retrospective Cohort Study. Diabetes Care, dc250154.
- Chattopadhyay, S., Engel, S. M., & Dunson, D. (2025). Inferring synergistic and antagonistic interactions in mixtures of exposures. The Annals of Applied Statistics, 19(1), 169-190.
- Khera, R., Aminorroaya, A., Dhingra, L.S., Thangaraj, P.M., Camargos, A.P., Bu, F., Ding, X., Nishimura, A., Anand, T.V., Arshad, F. and Blacketer, C., Chai, Y., Chattopadhyay, S., …, Suchard, M. A. (2024). Comparative Effectiveness of Second-line Antihyperglycemic Agents for Cardiovascular Outcomes: A Large-scale, Multinational, Federated Analysis of the LEGEND-T2DM Study. Journal of the American College of Cardiology, 84(10), 904-917. (Link)
- Chattopadhyay, S., Chakraborty, A., & Dunson, D. B. (2023). Nearest Neighbor Dirichlet Mixtures. Journal of Machine Learning Research. (Link)
- Maitre, L., Guimbaud, J. B., Warembourg, C., Güil-Oumrait, N., Petrone, P. M., Chadeau-Hyam, M., … & Exposome Data Challenge Participant Consortium. (2022). State-of-the-art methods for exposure-health studies: results from the exposome data challenge event. Environment International. (Link)